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Parallel computation of cluster properties: application to 
2~ percolation 

R Dewar?. and  C K Harris 
Department of Physics, University of Edinburgh, King’s Buildings, Mayfield Road,- 
Edinburgh EH9 332, UK 

Received 28 May 1986 

Abstract. We discuss various parallel algorithms for the enumeration of two-dimensional 
cluster properties in such problems as percolation and the lsing model. As an application, 
in a Monte Carlo simulation performed on the ICL distributed array processor (DAP) ,  we 
re-examine the numerical evidence for a recent conjecture by Jug concerning percolation 
singularities in two dimensions. 

1. Introduction 

The graph problem of analysing clusters has relevance to many areas of physics. In 
studies of percolation (for reviews see Stauffer 1979, Essam 1980), Ising systems 
(Gunton er a1 1983) and  models of kinetic growth (Family and Landau 1984), for 
example, it is natural to express quantities of interest in terms of properties of clusters 
of connected sites or bonds on a lattice. These may include the total number of clusters, 
cluster size distribution, cluster surface geometry, etc. 

Many authors have developed and applied computer programs to analyse clusters 
(e.g. Hoshen and  Kopelman 1976, Redner 1982). Typically, the algorithms proceed 
in a serial fashion; sites are analysed one by one for their connectivity to other sites, 
a labelling scheme is introduced to identify sites on the same cluster and  if two candidate 
clusters are found to be connected their labels are merged. In all such programs there 
is a trade-off between the time required to solve the problem and the computer space 
made available to store the graph. 

One way to increase efficiency is to analyse more than one site at a time. Parallel 
algorithms have been written (Hambrusch 1983) to d o  this on custom-built VLSI chips 
in which the processing elements operate simultaneously. However, with the advent 
of general-purpose parallel computers (Hockney and Jesshope 1981), it is of interest 
to develop algorithms that exploit the parallel architecture of existing machines. 

In 0 2, we introduce a parallel ‘burning’ algorithm that counts the total number of 
clusters of connected sites or bonds on various types of 2~ lattice. We also discuss a 
parallelised ‘ants in the labyrinth’ algorithm that analyses the cluster size distribution. 
Both algorithms are very simple. We have implemented them on the ICL distributed 
array processor ( DAP). They are very fast in practice because of their parallelism and 
because, in identifying the connectivity of clusters, only Boolean variables and 
operations are used; no site-labelling integers and label merges are required. 

The ‘ants’ algorithm has been used on the Edinburgh DAP machines in a recent 
study of the equilibrium cluster size distribution of the Z D  Ising model (Toral and Wall 
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1986). We learn that it has also been written independently for the DAP at Queen Mary 
College in a study of orientational domain clusters in a planar quadrupole model 
(Allen 1986). In § 3, we report on a Monte Carlo simulation of 2~ percolation that 
uses the ‘burning’ algorithm and re-examine the numerical evidence for a recent 
conjecture (Jug 1984, 1985, 1986) predicting novel singularities at the 2~ percolation 
threshold. 

2. Parallel algorithms for analysing clusters 

Consider a configuration of clusters of nearest-neighbour-connected occupied sites on 
a 2~ lattice (including one-site clusters perhaps). These occupied sites may represent 
open nodes in the percolation problem, up-spins in the Ising model or infected sites 
in an epidemic model for example. The following parallelised ‘ants in the labyrinth’ 
algorithm solves the problem of calculating the cluster sizes. 

On a parallel computer such as the DAP, processing elements operate simultaneously 
at each lattice site. The configuration of occupied sites is stored as a logical array 
across the lattice (TRUE = occupied, FALSE = unoccupied). Now an ant is put on 
some occupied site. At the next time-step this ant places offspring on each of the 
nearest-neighbour occupied sites. The off spring then proceed to multiply likewise until 
that entire cluster is populated. The parallel feature is that at each time-step the whole 
of the frontier of the ant population on the cluster advances at once. The ant population 
at any time is stored as a second logical array (TRUE=ant present, FALSE=no ant 
present). The cluster thus identified is a set of logicals (the ants) whose size is measured 
by a logical SUM function and is then removed from the configuration. The procedure 
is repeated until all clusters are removed. 

Of course, this algorithm is not fully parallel because clusters are identified one by 
one. (We remark as an aside however that for the problem of directed percolation, 
because there is no ‘back-tracking’ of paths connecting pairs of sites, it has been 
possible to write an efficient parallel algorithm for cluster-connectedness properties 
(Williams and McKenzie 1984).) 

If the problem is restricted to calculating only the total number of clusters in the 
configuration, the following ‘burning’ algorithm is very efficient. To illustrate it, 
consider the typical configuration of figure l ( a )  containing three clusters on a 4 x 4 
square lattice with planar boundary conditions. Iteration of the central steps of the 

Clusters.  0 Clusters .1  

_j 

i c ’  €El ; d l  s t o p  

Clustcrs=3 

Figure 1.  Illustrating the ‘burning’ algorithm for counting clusters. 
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algorithm systematically reduces all clusters to one-site clusters, each of which augments 
the cluster total by one and is then removed. The reduction, using Boolean operations 
only, is performed in parallel across the entire lattice and is depicted in figures 1 (b ) - (  d ) .  

The steps are as follows. 
( i )  Identify all occupied sites having no occupied nearest neighbours to the north 

and east. There will be four types, shown in figures 2 ( a ) - ( d ) .  This step identifies the 
north and east ‘coasts’ of all clusters. 

0 
0 

0 
0 

0 0 

i,ilo +L O 

Figure 2. ( a ) - ( d ) ,  sites with no connections to the north and east; ( e )  indenting the 
north-east corners to create new dangling ends. 

( i i)  Then for each (a)-type site, count one cluster and remove the site. This step 
accumulates the cluster total. 

(iii) Now remove all sites of types ( b )  and (c). This step ‘burns off’ the north- 
and east-dangling ends. 

(iv) Finally replace the (d)-type sites with new occupied sites lying to the south-west 
(if  not already occupied), as shown in figure 2 ( e ) .  This step indents the north-east 
corners to create new dangling ends. Also, since operations are done in parallel, no 
two clusters are inadvertantly joined at this step, as seen from figures l ( a )  and ( b ) .  

Repeat steps (i)-(iv) until no sites remain. 
We note that for cyclic boundary conditions, some (cyclicly-spanning) clusters only 

get reduced to minimal loops wrapped round the lattice, so that the algorithm will not 
terminate. These remaining clusters can be counted by the ‘ants’ algorithm described 
above. The algorithm is easily modified to count both site- and bond-occupied clusters 
on other regular lattices. 

For both of the above algorithms the entire configuration is stored in the computer, 
which limits the analyses to relatively small lattices. For a lattice of linear size L, the 
time to analyse a configuration increases as Lz. In practice, on the DAP we enhance 
the efficiency for lattice sizes L < 64 by storing and analysing (64/ L)* configurations 
simultaneously. On the DAP, the ‘ants’ algorithm analyses 400 000 configurations per 
hour for the site percolation problem at pc=0.5927 on a square lattice of size L =  3 2  
with cyclic boundary conditions. The ‘burning’ algorithm analyses 1.6 x lo6 configur- 
ations per hour for the bond percolation problem at p c  = 0.5 on the same lattice. Both 
these figures include the time to generate configurations. The latter figure is to be 
compared with 70 000 configurations per hour for the same problem on a L = 30 lattice 
using a serial algorithm on the Cray 1 machine (Jug 1985). 
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3. 2~ percolation singularities 

Recently Jug has presented evidence from numerical work and series expansion studies 
(Jug 1985, 1986) for the result (Jug 1984) that the two-dimensional percolation ‘free 
energy’, the mean number of clusters per site K ( p )  at concentration p ,  has a singular 
part near the threshold p c  of the form 

K , ( P ) =  D(p-p,)’InlInip-p,i I (1) 

K , ( p )  = D ( P  (2) 

instead of the currently accepted form 

where it is believed that (Y = - f  (Stauffer 1979). 
Form (1) was derived for the bond percolation problem from a Grassmann path 

integral ( G P I )  treatment of the associated bond-diluted Ising-model free energy f (  T, p ) ,  
for which dilute Ising-type critical behaviour was found everywhere along the critical 
curve T,( p ) ,  including the percolation threshold T = 0, p = pc. 

Numerical evidence for (1) was provided by computing K“’( pel  L )  = 
d 3 K (  p ,  L)/dp3 Ip = p c  from the fluctuation formula 

K ” ’ ( p ,  L )  = c,{(N,n,)-(N,)(n,))+ ~ 2 ~ ~ ~ ~ ~ , ~ - 2 ~ ~ , ~ ~ ~ , n , ~ + ~ ~ ~ o ~ ’ ~ ~ , ~ - ( ~ ~ ~ ~ ~ c ~ ~  

- 3 ( N %  N,n,) - 6(No)7(&) + 6 ( N o ) ( N 3 ( n c )  - ( N h , ) }  

+ C 3 { ( N h , )  -3(N,)(N~nc)+6(N,)’(N,n,)  

(3 1 
where ( ) is an average over a large number of configurations. No and n, are the 
number of occupied bonds (or sites) and the number of clusters per site in each 
configuration, respectively, and the constants C , ,  C, and C3 are given by 

where q = 1 - p .  Jug’s results supported the finite-size scaling form 

K ” ’ ( p , ,  L )  = A+ B ( L ) L +  CO (5) 
( B ( L )  contains logarithmic corrections) consistent with form (1) and hyperscaling, in 
preference to 

K”‘( p , ,  L )  = A + BL1’4+ CO (6) 
consistent with the conventional form (2)  and hyperscaling. 

We present results of a similar Monte Carlo study, using the ‘burning’ algorithm, 
which we initiated (Dewar and Harris 1985) on learning of the above work. Kesten 
(1986) has since noted that form (1) cannot be correct since he has shown (Kesten 
1983) that for bond or  site percolation on the square lattice K,(  p )  is twice-continuously 
differentiable for all p in [0, 11, including p c .  Nevertheless, in the absence of a 
demonstration of how the CPI theory fails at pc  and in view of the supporting numerical 
evidence, it remains of interest to re-examine the question raised by the conjecture (1).  

Our results for bond percolation on square lattices (BSQ) and site percolation on 
triangular lattices (ST) of linear size L = 8, 12, 16, 24 and  32 are shown in figure 3 ( a ) ,  
where they are compared with those of Jug (1985) ( BSQ, lattice sizes 8, 12, 16, 24 and 
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3 2  

2 4  

18 

8 16 3 2  1.6 2.0 2 . 4  
L L l l 4  

Figure 3. L dependence of - K " ' ( p , ,  L )  defined in the text. ( a ) ,  log-log plot and  ( b ) ,  fit 
to E L ' / 4  ( x  = BSQ, + = ST in present work: 0 = BSQ from Jug (1985)). 

30) .  Our data are consistent with the straight line of slope in the log-log plot expected 
from the conventional result (6). The fit to the form K " ' ( p , ,  L )  = B L ' / 4  is shown in 
figure 3 ( b )  and has x 2 =  5.57 (BSQ) and 6.3 (ST, last four points). 

In our analysis we have adopted the following approach to reduce the considerable 
fluctuation in the value of K " ' ( p , ,  L )  as given by ( 3 ) .  K ( p )  contains an analytic 
contribution 

( 7 )  

where constants a, b and c are either known analytically, estimated from series (Domb 
and  Pearce 1976), or can be estimated from the numerical simulation itself as a useful 
check on the correctness of the algorithm. When K"' (p , ,  L )  is averaged over a large 
but finite number of sampled configurations, the b and c terms in ( 7 )  contribute 
negligibly to its mean but substantially to its fluctuation. Therefore in the fluctuation 
formula ( 3 )  we substitute for n, the decomposition 

K,( p )  = a + b( p - p , ) +  c (  p - p , ) ' + .  . . 

n ,  = n,* + b( No - Np,) /  N + c( No - Npc)'/ N Z  (8) 

where N is the total number of nodes (edges) in the lattice for the site (bond) problem, 
and then subtract off the contribution arising from the b and c terms. The effect of 
subtracting off this noise is shown graphically in figure 4. In the ST simulation we 
subtract an  additional cubic term in (8) with coefficient d = 1, in order to remove the 
constant A in ( 6 ) ,  the bulk value of which is 6 .  

In addition we recall that, as remarked in § 2 ,  the 'burning' algorithm does not 
completely reduce certain spanning clusters on lattices with cyclic boundary conditions. 
Such remaining clusters may be counted by the 'ants' algorithm, although in practice 
remaining sites were taken to constitute a single spanning cluster contributing one to 
the cluster total. We have verified that the effect of the relatively rare extra spanning 
clusters on the value of K"' (p , ,  L )  is negligible, thus enabling an additional gain in 
speed of the algorithm to 2 x lo6 configurations analysed per hour for the BSQ problem 
on a L = 32 lattice. In this way error bars have been reduced sufficiently to indicate 
a clear discrepancy between the two sets of BSQ data in figure 3 ( a ) .  Following numerous 
program checks, we are unable to explain the reason for this discrepancy. 
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Raw 
d a t a  r- 

Noise 
subt rac ted  

-K”’I p c  , 161 

Figure4. Effect of noise reduction (described in the text) for K ” ’ ( p , ,  16) ,  bond percolation. 
1 box = average over 1 638 400 configurations, total histogram = 62 boxes. 

Further evidence in support of the conventional theory of 2~ percolation is obtained 
on comparing the measured value of the amplitude ratio rmeas = Bs/B ,  (where subscripts 
s and t refer to BSQ and ST respectively) with the following value obtained (see the 
appendix) using finite-size scaling and two-scale-factor universality: 

r = ( P,/Pt)  -“ P s /  Dt Pt)3’dY. (9) 

p here is the number of lattice sites per unit volume and D is the constant appearing 
in (2). Using values of D calculated by Domb and Pearce (1976)t we obtain r = 2.08 (2) 
while rmeas = 2.09 (2). Such a good agreement is probably fortuitous as (9) holds only 
for lattices of the same shape while ours were not (they were squares of side L for 
BSQ and 60” rhombuses of side L for ST). Taking this into account yields (see the 
appendix) the bounds 

1.97 (2) s rmcas 6 2.26 (2). (10) 

The fact that rmeas lies comfortably within this range strongly suggests that we have 
reached the asymptotic scaling regime with the lattice sizes that we used, and, together 
with the observed L”4 behaviour, provides convincing evidence for the validity of the 
conventional picture of ZD percolation. 
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Appendix. Critical amplitudes in the percolation ‘free energy’ K ( p ,  L )  
and its derivatives 

Let E = ( p  - p , ‘ ) / p :  where x refers to the lattice type. From eqution (2) and hyperscal- 
ing, the singular part of the bulk ‘free energy’ per site has the form 

U p ,  a) = ~ , ( ~ , ‘ ) ~ ” ( K o ” 5 ~ ) - ~  (A I )  

where 5;’ = K ~ E “  is the inverse correlation length. If px is the density of lattice sites 
we may also write 

a p ,  CO) = FPi’5id (A2) 
where two-scale-factor universality (Stauffer et a1 1972) tells us that F, the (singular) 
free energy of a volume Sf, is a universal constant independent of lattice type. (Al )  
and (A2) give 

(Ko”lKad = ( P x o x / P y D , , ) ( P : / P S ) d ” .  (A3) 

Now invoking finite-size scaling when L, & + C O  with LIS, arbitrary and fixed, 
K:’(p ,  L )  will have the scaling form 

K f ” ( p ,  L )  = c x ~ l j - d ’ ” ” g ( L / & )  (A41 
where g is a universal function, while from (A l )  we find that the bulk K:‘(p ,  CO) 

diverges as 

K r ( p ,  CO) = dv(dv- l ) ( d v - 2 ) D x ( p ~ ) d ” - 3 ( K , ” ~ x ) ( 3 - d u ) ’ u .  (A51 

(A61 

(A7) 
For lattice blocks of the same shape, this will be the ratio of critical amplitudes 
r = BJB,  where (in the conventional theory) K F ( p , ,  L )  = BL”4. This gives equation 
(9). In the present case, d = 2 and v =! (conventionally), for lattice types x = square 
and y =triangular, px = 1 and py = 2 / a ,  and 0, = -8.48 (3), Dy = -4.370 (15) 
(Domb and Pearce 1976) giving 

r = 2.08 (2). (A81 

To take into account the difference in shapes of the two lattice blocks in our 

Consider a critical quantity F(L,  x, s) (such as K:’(p , ,  L ) )  where L is the size of 
x is the lattice type and s is the shape of lattice block. 

(A9) 
where p is the critical exponent (we take p > 0 here). If a different block L‘, s’ can 
be placed entirely within the first block L, s then clearly 

By demanding that (A5) be recovered from (A4) when L - C O  with 6, fixed we find 

C,/  Cy  = (Ox/ Dy)(  p : / ~ : ) ~ ” - ~ (  K,” /  K i ) ‘ 3 - d ” ’ / ” .  
Substituting (A3) into (A6) to eliminate K,”/ K i  we obtain the result 

cx/ c y  = ( Px / P” 1 - ’ ( P X W  P y q  ) 3 / d v .  

simulations, we place bounds on the measured amplitude ratio as follows. 

the lattice, equal to 
For large L, 

F (  L, x, s )  = B ( x ,  s)LP 

L ’ s  L 

and we assume 

F (  L‘, X, s ’ )  6 F (  L, x, s )  
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i.e. 
B ( x ,  s’) LfP s B ( x ,  s )  Lp. 

Suppose an  s’ block which just fits inside the L, s block has 

L ’ =  a L  

for some a in [0,1].  Then we have 

B ( x ,  s ‘ ) a P  s B ( x ,  s ) .  

r = B ( x ,  s ) / B ( y ,  s) = B ( x ,  s ’ ) / B ( y ,  s‘) 

( A l l )  

(A12) 

as in (A8),  for blocks of the same shape. For blocks of different shape the ratio will be 

For lattice types x and y we can calculate the ratio 

r s a - ” r d .  (A14) 

L = pL” (‘415) 

Now suppose the block L, s just fits inside another block L”, s‘ so that 

for some p in [0, 11.  Then by a similar argument we have 

r > p p r d .  (A161 

(A14) and (A16) then place bounds 

a P r G  r d s p - & r  (A17) 

on the ratio of amplitudes for blocks of different shape. 
In our simulations, the blocks are: s = square, size L; s ’ =  60” rhombus, side L, so 

size L ’ =  (3i’4/2i’2)L.  With p = a  (conventional value), the ratio rmeas we actually 
measure is therefore 

(A181 

From the geometry in figure 5 ,  we find the parameters a = p = 3-’’4; putting this, (A18) 
and (A8) into (A17) we find 

1/4 1/4 rmeas = (21’2/3 ) r d .  

1.97 ( 2 ) s  rm,,,G2.26 (2) .  

l u )  16)  

Figure 5. Configurations of blocks that place bounds on rd. ( a )  gives a =3-1’4, ( 6 )  gives 
p = 3-1’4, defined in the text. 
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